Metanav

Powering the Industrial Internet of Things

Powering the Industrial Internet of ThingsThe Industrial Internet of Things (IIoT) has the potential to revolutionize industry. With use cases that promise to increase capacity and efficiency while lowering costs, IIoT technology is a smart investment that pays off quickly.

Some of the use cases that hold huge potential include predictive maintenance, which helps keep assets up and running, avoiding downtime and costly routine maintenance when it isn’t warranted. (Tracy, 2017) The safety of industrial spaces improves as sensors provide alerts about unsafe conditions. Assets can be tracked easily, making it easier to locate and move goods efficiently while monitoring inventory. Fleets can be deployed efficiently where they are needed, reducing overall resource consumption while maximizing impact. In short, IIoT devices and sensors can make it easier and more efficient to do business, creating safer, more productive environments.

IIoT devices and sensors often need to function in hostile environments, however, and can be expected to work 24/7. They are tucked away in hard-to-reach places and are increasingly smaller. Environmental conditions around the device or sensor can be very hot or cold, and sometimes humid or dusty. For example, machines may reach 150°C in a plastic packaging plant, or have to withstand freezing temperatures near a pipeline in Alaska. (Pasero, 2017) It is much more feasible to have devices that run on batteries, and those batteries need to last as long as possible. The challenge is that, while IIoT devices and sensors are often designed to last for 10-15 years, their batteries only last 2-3 years. Given that the IIoT market is expected to grow to 75.4 billion devices by 2025, that’s a lot of batteries that need charging and replacement. (Columbus, 2016)

Fortunately, there is a solution that can help to extend battery life in the Industrial Internet of Things. IEEE has just released the IEEE Technology Report on Wake-Up Radio. This technology, under development right now by the IEEE 802.11ba standards working group, can increase the battery life of an IIoT device by up to 94%. This can add years to the life of a battery, and in turn an Internet of Things device. The duty-cycled IEEE Wake-Up Radio is added to the device, which only wakes up the device when it is needed. By maintaining a longer sleep state, the battery lasts longer. The result is cost savings, improved efficiency, and longer device life.

The Industrial Internet of Things will continue to grow because it brings such powerful return on investment. But powering the Industrial Internet of Things must be planned for, in order to reap all of the benefits this technology can provide. IIoT device manufacturers need to plan now to integrate IEEE Wake-Up Radio into their devices, and the IEEE Technology Report has the information organizations need to gain this competitive advantage.

Order your copy of the IEEE Technology Report on Wake-Up Radio today, or request information about organizational pricing.

 

Resources

Philip, T. (April, 2017). The Top 5 Industrial IoT Use Cases. IBM Internet of Things Blog.

Pasero, D. (2017) Powering sensor nodes for industrial IoT. Power Electronics News.

Columbus, L. (November, 2016). Roundup of Internet of Things Forecasts and Market Estimates. Forbes.

, , , , , , , , , , , , , , , ,

Trackbacks/Pingbacks

  1. Introduction to Predictive Maintenance - IEEE Innovation at Work - December 7, 2017

    […] the Industrial Internet of Things continues to grow, predictive maintenance technology is transforming industries by evaluating the condition of […]

Leave a Reply