Semiconductors are the brains behind so many devices and processes that we take for granted today, from computers, smartphones, cars, programmable coffee makers, and washing machines to high-tech robotics, augmented reality and virtual reality systems, satellites used in national defense, and more. Based on their widespread use in such a broad range of technologies, semiconductors are critical to life in modern industrialized societies — and this reality was further validated by the supply chain issues and shipping delays experienced during the pandemic.
Government Support for the Semiconductor Industry
To help strengthen the United States’ competitiveness and resilience in the semiconductor arena, the CHIPS (“Creating Helpful Incentives to Produce Semiconductors”) and Science Act, enacted in August 2022, earmarked nearly US$53 billion for domestic research and manufacturing. It also established a 25% tax credit for capital investments in semiconductor manufacturing. Europe soon followed suit with their own version of this initiative, The European Chips Act, in September 2023.
Since then, the U.S. government has already disbursed some US$29 billion in CHIPS Act funds to eight companies— Intel, Micron, Global Foundries, Polar Semiconductor, TSMC Arizona Corporation (a subsidiary of Taiwan Semiconductor Manufacturing Company), Samsung, BAE Systems, and Microchip Technology— in an effort to reinvigorate semiconductor manufacturing domestically. This funding succeeded in catalyzing the establishment of a range of new manufacturing facilities, including Intel’s new factories in Arizona, New Mexico, Oregon, and Ohio as well as Micron’s new US$100 billion chip plant in Syracuse, New York.
The European CHIPS Act has driven similar investment in Europe’s semiconductor industry in hopes of doubling the EU’s global market share from 10% to 20% by 2030. “The governments of nearly every major economy are pouring tens of billions of dollars into semiconductor industries every year,” confirmed Chris Miller of Nature Reviews Electrical Engineering, all in an effort to stake claim in a robust global semiconductor market that forecasting organization World Semiconductor Trade Statistics predicts will grow by over 13% to US$588 billion in 2024 and hit US$1 trillion in global revenue by 2030.
The problem? There aren’t currently enough semiconductor technicians and engineers to meet the demand created by the CHIPS Acts and other global initiatives. For example, the U.S. government expects there will be a need for 100,000+ semiconductor technicians and as many as 300,000+ engineering graduates by 2030 to support the growing industry.
Initiatives in Semiconductor Workforce Development Training
In response, companies and educational institutions alike are taking creating and resourceful approaches to filling the talent gap.
As broadcasted in a June 2024 PBS NewsHour segment, Intel Vice President of Talent Planning and Acquisition Cindi Harper confirmed that Arizona-based Intel has recently invested hundreds of millions of dollars into workforce development and that its new semiconductor plants will create 10,000 jobs at the company.
“We have high-paying jobs that are extremely interesting, [and] the manufacturing side of it isn’t what you would have seen 30 or 40 years ago,” agreed Greg Jackson, Director of Facility Operation at Phoenix, AZ-based Taiwan Semiconductor Manufacturing Company, in the PBS NewsHour segment.
And a broad range of colleges, universities, and online educational platforms worldwide are further supporting the semiconductor workforce development movement by offering certificate programs in everything from semiconductor fabrication, devices, packaging, microelectronics, AI in semiconductor design (a strategy which is helping manufacturers enjoy greater efficiency and speed to market), and more.
Let IEEE Unlock the Door to Opportunity
Get started with specialized training, Artificial Intelligence and Machine Learning in Chip Design. Delve into the ways in which artificial intelligence (AI) and machine learning (ML) techniques are revolutionizing chip design methodologies. This training provides engineers with essential knowledge to leverage AI and ML effectively in chip design and electronic design automation (EDA). Learners will identify high-value applications and gain insight into optimizing design methods and preparing for the future of chip design.
Upon successful completion of the program, learners will earn an IEEE Certificate of Completion bearing professional development hours (PDHs) and continuing education units (CEUs). Get started today!
Based on the ability of artificial intelligence (AI) to automate repetitive tasks and process massive amounts of data, AI technology is revolutionizing many industries. Such industries range from healthcare and banking to cyber security, transportation, marketing, customer service, manufacturing, and more.
One industry that’s undergoing a particularly significant transformation at the hands of AI technology is the field of semiconductor design.
The Landscape for Semiconductors
Semiconductors, also called chips, microchips, or integrated circuits, are tiny components that enable electronic switching and serve as the foundation for all computer processing. As a result, semiconductors are integral to everything from smart phones and laptops to wind turbines, solar technology, wearable technology (like fitness trackers), electronic control systems and driverless capabilities in modern vehicles, implantable medical technology (like pacemakers and insulin pumps), gaming hardware, and many more technologies consider essential in today’s industrialized economies.
As sales of connected technologies continue to grow, so does demand for the next-generation semiconductors needed to fuel them. According to Statista, the global market for semiconductors is expected to grow by 13% to nearly US$590 billion in 2024. At the same time, the semiconductor industry is highly competitive. Taiwan, South Korea, and Japan currently lead the world in semiconductor production. However, experts expect the landscape will get even more competitive. The United States and European Union are vigorously ramping up their activity following their enactment of The CHIPS and Science Act and The European CHIPS Act in August 2022 and September 2023, respectively.
In the semiconductor industry’s ongoing quest for tools that can enhance engineering efficiency and accelerate speed to market, thereby giving manufacturers a competitive edge, the use of artificial intelligence and machine learning (ML) stand as game-changers in semiconductor design and manufacturing.
A New Paradigm in Design
Experts confirm that the use of AI enhances semiconductor (chip) design, or the process known as “electronic design automation” (EDA), in many ways.
Among them, AI automates complex processing tasks, thereby reducing the risk of human error. Artificial intelligence’s ability to analyze past patterns across huge quantities of data, identify efficient pathways, and optimize the space (or “real estate”) within semiconductors helps improve semiconductor performance and meet design criteria. It also reduces chip size, resources required, and cost. By being able to “learn” from past experiences, AI algorithms help semiconductor engineers predict and prevent potential design issues down the road that could otherwise result in the need for costly changes.
Ultimately, AI helps semiconductor manufacturers optimize power, performance, and area, or “PPA”– the three goals of chip design– by helping engineers to both design advanced new chips as well as efficiently and cheaply overhaul and shrink the many older-technology (65 nanometer process node or larger) chip designs on which much of the semiconductor industry has been predicated for the past decade without the need to update their fabrication equipment.
The future continues to look bright for the integration of AI in semiconductor design, with Deloitte experts noting that “some chips are getting so complex that advanced AI may soon be required.”
Learn the Ins and Outs of AI in Semiconductor Design from an Industry Expert
In today’s fast-paced technological landscape, AI and ML techniques are revolutionizing chip design methodologies. Integrated-circuit (IC) chip companies and engineers have unprecedented opportunities to use these technologies to enhance product quality across crucial dimensions such as speed, energy efficiency, and cost. This, in turn, enables the achievement of goals with reduced engineering resources and accelerated time-to-market.
Stay on top of the dynamic field of AI in semiconductor design through a two-day virtual training from IEEE, Artificial Intelligence and Machine Learning in Chip Design. It is presented by Andrew B. Kahng, an IEEE Fellow, Distinguished Professor of CSE and ECE at the University of California San Diego, and co-founder of Blaze DFM, Inc., an EDA software company that delivered new cost and yield optimizations at the IC design-manufacturing interface.
This comprehensive two-day virtual training session will equip engineers with:
The essential knowledge to leverage AI and ML effectively in chip design and EDA,
An understanding of the rationale behind these technological shifts to identifying high-value applications and selecting relevant AI and ML technologies, and
Insights into optimizing design methods and preparing for the future of chip design.
Attendees will also have the opportunity for first-hand interaction with Professor Kahng and ask him questions during the interactive question-and-answer portion of the training.
Successful completion of this training and assessment will earn attendees an IEEE Certificate of Completion bearing professional development hours (PDHs) and continuing education units (CEUs).
Don’t miss this opportunity to get your questions answered directly by a renowned subject matter expert in the industry! Save your seat today to secure your spot in this enlightening training session.
The new wireless networking standard 802.11ax (Wi-Fi 6) delivers enhanced wireless technology in dense environments where it can more effectively overcome interference from cells on the same channel. An even newer version of Wi-Fi 6, dubbed “Wi-Fi 6 Extended” (Wi-Fi 6E), could deliver even better service.
As Jerry Jackson in PC Mag reports, Wi-Fi 6E provides faster speeds and lower latencies than Wi-Fi 6 and earlier versions. At the time of announcement, the IEEE 802.11ax (Wi-Fi 6) standard “was limited by law to a wireless spectrum that only covered the 2.4GHz and 5GHz bands”. These 2.4GHz bands have just three non-overlapping channels— meaning you, your household, and your neighbors, all share bandwidth.
Since multiple devices are competing for bandwidth, signals are often lost. However, after the Federal Communications Commission unanimously voted to make the 6GHz band available for unlicensed use in April 2020, significantly more airwaves opened, which routers can use to broadcast Wi-Fi signals.
Hence, Wi-Fi 6E expands on Wi-Fi 6 to cover 6GHz frequency.
“The opening of the 6GHz band is the biggest spectrum addition to Wi-Fi since 1989,” writes Jackson. “The jump from 5GHz to 6GHz might not sound like much, but it essentially quadruples the amount of airwaves (14 additional 80MHz channels, and seven additional 160MHz channels) available for routers and smart devices. That means less signal interference.”
What Are the Technical Benefits of Wi-Fi 6?
Wi-Fi 6 is expected to bring a number of technical benefits that will “enable use cases beyond what is possible today,” states Tim Pohlmann, CEO of IP Analytics, an IP intelligence tool. According to Pohlmann, these benefits will include:
Connected venues and cities: Wi-Fi 6 BSS Colouring technology will guarantee resistance to interference— even in public places with a high density of devices such as event venues and universities. With its larger bandwidth, Wi-Fi 6 can deliver consistent real-time data exchange while allowing thousands of people to connect.
Connected cars: Wi-Fi 6 enables larger bandwidth that will let vehicles exchange real-time information. Furthermore, Wi-Fi 6’s target wake time (TWT) feature allows for lower battery consumption. This means Wi-Fi sensors in traffic lights or buildings will only “wake up” when needed.
Connected factories: Wi-Fi 6 technologies OFDMA and MU-MIMO will support “more IoT devices to operate unimpeded on the network, and thus means that millions of machine components can be connected and real-time data points operated at low-power consumption.”
Connected homes: Wi-Fi 6 enables 2.4 GHz and 5 GHz to operate at the same time, delivering high bandwidth and low latency for high-definition video systems, augmented reality/virtual reality (AR/VR) devices, high-quality streaming platforms used for, conference video calls and gaming.
“Wi-Fi 6 will likely become the dominant access choice for indoor networks on account of improvements in speed, latency and higher density of connected devices,” states Pohlmann. “It is also the ideal system in spaces where access points will serve more users.”
However, he notes that Wi-Fi 6 must exist alongside 5G to support “use cases at home, while driving, at the office, outside or when working remotely.” While many argue that Wi-Fi 6 and 5G will be competitors, Pohlmann believes that they will work in tandem and complement each other in many applications. Furthermore, it is unlikely that a sole technology would support all connectivity.
Wi-Fi 6 and Wi-Fi 6 Extended are still developing. However, the ability to overcome service issues in high-density environments will undoubtedly spur advancement.
Improving Quality of Experience with IEEE Std 802.11ax™
The work on High Efficiency Wireless Local Area Networks (WLANs) in IEEE Std 802.11ax™ started in 2013 as a new amendment to the IEEE 802.11 WLAN standard. A goal of the new amendment is to address dense deployments characterized by a large number of access points and stations placed in close proximity in a limited geographical area. Such usage scenarios impact the quality of experience (QoE) for latency-sensitive applications such as voice-over-Wi-Fi™ and video conferencing.
Learn More About Wi-Fi 6
Enroll in our upcoming live two-course program, IEEE 802.11ax: An Overview of High Efficiency Wi-Fi (Wi-Fi 6), which will provide an overview of the features and optimizations introduced by IEEE 802.11ax to the physical (PHY) and medium access control (MAC) layers, which lead to the improvements in Wi-Fi. Purchase this course program by 17 February for the opportunity to ask questions and interact with the instructors. Part One will take place on 21 Feb from 12-3pm ET, and Part Two will take place at the same time on the following day.
Plus, check out this on-demand virtual event from IEEE Educational Activities and IEEE Standards Association that describes new IEEE 802.11ax features such as Orthogonal Frequency Division Multiple Access and Uplink multi-user transmissions together with Physical (PHY) and Medium Access Control (MAC) enhancements specific to IEEE 802.11ax to improve QoE. Watch now!
There is a veritably deafening buzz around blockchain at the moment as it’s the technology du jour. And rightfully so, as it ticks a lot of boxes: it’s decentralized, anonymous, and immutable. It also promises security through truth and transparency.
Amid the excitement about it, brands are rushing to embrace the ledger technology. Upon announcing that they’re working with, or will soon incorporate, blockchain technologies, their stock price skyrockets.
The Blockchain Bounce Phenomenon
This is called blockchain bounce.
Don’t believe us? Take Overstock, for example, whose share price rose +200% post-announcement of a loyalty plan built on blockchain.
Or restaurants like Chanticleer Holdings (whose brands include American Burger Co. and Little Big Burger) and Hooter’s. Both stocks became hot simply because of their association with blockchain.
It also happened to Kodak recently, when it partnered with WENN Digital to launch a blockchain-powered image rights platform, called KODAKOne. Shares of Eastman Kodak’s stock surged more than 30% on the announcement, closing at $6.80.
As the New York Times noted, these bold gambles have had mixed reactions among investors: some are excited, others confused, with a majority curious about “wading into dubious business deals” in search of instant growth through blockchain bounce.
Are businesses that attach themselves to blockchain merely a fad? Or will utilizing blockchain to provide the building blocks for a company’s future have an Amazon-like effect, as Starbucks Chairman Howard Shultz predicts? Could the blockchain bounce make a difference for your company? Share your thoughts in the comments below!
Coming Soon: IEEE Introduction to Blockchain Technology
It’s clear blockchain isn’t going away anytime soon. Which is why it’s in your business’ best interests to learn as much as possible, as soon as possible, about it. To make sense of the recent blockchain revolution, you’ve got to understand what a blockchain really is and what it’s capable of doing. The best place to start is with the new IEEE Introduction to Blockchain Technology 3-course program. Pre-order for your company now and save.