Metanav

Tag Archives | logistics industry

Powering Predictive Maintenance

Powering Predictive Maintenance from IEEE Innovation at WorkPredictive maintenance is one of the most compelling use cases for the industrial Internet of Things (IIoT). In fact, according to IBM, predictive maintenance can prevent up to 70% of equipment breakdowns, and reduce downtime by as much as 50%.

In the IEEE Technology Report on Wake-Up Radio (IEEE, 2017), this use case is highlighted as one of the biggest market opportunities in the next five years, impacting industries such as shipping and logistics, process industries, discrete manufacturing, utilities, and healthcare. Even governments are taking advantage of predictive maintenance: The United States Department of Defense just announced that it will use C3 IoT’s platform to develop artificial intelligence tools for predictive maintenance of assets. (Dignan, 2017)

As organizations begin to take advantage of predictive maintenance, the practical matter of deployment comes into play. Not every device and sensor used for predictive maintenance can be wired. Wireless applications are numerous, and powering those deployments in a sustainable way is critical.

That’s where IEEE Wake-Up Radio comes into play. This upcoming standard, being developed by the IEEE 802.11ba standards task group, will significantly increase battery life in Internet of Things devices. The energy savings is significant, increasing the life of a single battery by years. This reduces costs even further for organizations that seek the benefits of predictive maintenance, both in terms of the cost of the batteries themselves, as well as in the man-hours needed to physically change the batteries. Depending on the number of devices and sensors deployed within an organization, the cost savings can be significant.

The development of predictive maintenance devices and sensors needs to take IEEE Wake-Up Radio into account when planning future devices. If the devices will be connected via 802.11 (Wi-Fi®), then IEEE Wake-Up Radio is required in order to stay competitive in a crowded market.

To learn more about IEEE Wake-Up Radio, check out the IEEE Technology Report on Wake-Up Radio, available now.

 

Resources

IEEE. (November 2017) IEEE Technology Report on Wake-Up Radio: An Application, Market, and Technology Impact Analysis of Low-Power/Low-Latency 802.11 Wireless LAN Interfaces. IEEE Educational Activities and IEEE Standards Association.

Dignan, L. (November 2017). C3 IoT Lands Department of Defense Deal for Aircraft Predictive Maintenance. ZDNet. 

 

Continue Reading 0

Powering the Industrial Internet of Things

Powering the Industrial Internet of ThingsThe Industrial Internet of Things (IIoT) has the potential to revolutionize industry. With use cases that promise to increase capacity and efficiency while lowering costs, IIoT technology is a smart investment that pays off quickly.

Some of the use cases that hold huge potential include predictive maintenance, which helps keep assets up and running, avoiding downtime and costly routine maintenance when it isn’t warranted. (Tracy, 2017) The safety of industrial spaces improves as sensors provide alerts about unsafe conditions. Assets can be tracked easily, making it easier to locate and move goods efficiently while monitoring inventory. Fleets can be deployed efficiently where they are needed, reducing overall resource consumption while maximizing impact. In short, IIoT devices and sensors can make it easier and more efficient to do business, creating safer, more productive environments.

IIoT devices and sensors often need to function in hostile environments, however, and can be expected to work 24/7. They are tucked away in hard-to-reach places and are increasingly smaller. Environmental conditions around the device or sensor can be very hot or cold, and sometimes humid or dusty. For example, machines may reach 150°C in a plastic packaging plant, or have to withstand freezing temperatures near a pipeline in Alaska. (Pasero, 2017) It is much more feasible to have devices that run on batteries, and those batteries need to last as long as possible. The challenge is that, while IIoT devices and sensors are often designed to last for 10-15 years, their batteries only last 2-3 years. Given that the IIoT market is expected to grow to 75.4 billion devices by 2025, that’s a lot of batteries that need charging and replacement. (Columbus, 2016)

Fortunately, there is a solution that can help to extend battery life in the Industrial Internet of Things. IEEE has just released the IEEE Technology Report on Wake-Up Radio. This technology, under development right now by the IEEE 802.11ba standards working group, can increase the battery life of an IIoT device by up to 94%. This can add years to the life of a battery, and in turn an Internet of Things device. The duty-cycled IEEE Wake-Up Radio is added to the device, which only wakes up the device when it is needed. By maintaining a longer sleep state, the battery lasts longer. The result is cost savings, improved efficiency, and longer device life.

The Industrial Internet of Things will continue to grow because it brings such powerful return on investment. But powering the Industrial Internet of Things must be planned for, in order to reap all of the benefits this technology can provide. IIoT device manufacturers need to plan now to integrate IEEE Wake-Up Radio into their devices, and the IEEE Technology Report has the information organizations need to gain this competitive advantage.

Order your copy of the IEEE Technology Report on Wake-Up Radio today, or request information about organizational pricing.

 

Resources

Philip, T. (April, 2017). The Top 5 Industrial IoT Use Cases. IBM Internet of Things Blog.

Pasero, D. (2017) Powering sensor nodes for industrial IoT. Power Electronics News.

Columbus, L. (November, 2016). Roundup of Internet of Things Forecasts and Market Estimates. Forbes.

Continue Reading 1

How to Make IoT Batteries Last Longer

Make IoT Batteries Last Longer: IEEE Wake-Up Radio InfographicAnalyst firm Gartner predicts that there will be 8.4 billion connected “things” in 2017, which will then expand to 20.4 billion Internet of Things (IOT) devices by 2020. That number is staggering. And it is reasonable to expect that a great many of these devices will run on batteries. Yet battery life can be limited. How do we make IoT batteries last longer?

Consider the use cases:

  • Wearable medical devices that cannot be hard wired
  • Logistics sensors on vehicles, moving from place to place
  • Agricultural IoT devices in the middle of fields
  • Smart home consumer devices that are easier to install without hardwiring, increasing market adoption

…and these are just a few instances of the many IoT use cases that will require battery operated devices. Given the sheer number of devices, it is essential that IoT manufacturers create devices that have a long battery life while maintaining optimal performance. We must make IoT batteries last longer.

This is why the IEEE 802.11ba standards working group is developing the IEEE Wake-Up Radio standard. This technology has the potential to increase battery life in IoT devices from months to years. When you consider the cost of replacing 20.4 billion batteries (both the batteries themselves, as well as the time involved), this will have significant economic impact.

How it Works

IoT devices have an embedded radio that has to “wake up” in order for data to be transmitted. The longer the device is awake, the more power it consumes, but the higher the performance. To solve the power issue, a 2nd, low-power, duty-cycled Wake-Up Radio is added to the device that waits for transmissions. This Wake-Up Radio only wakes up the main device when it is needs to, allowing a longer device sleep state without compromising performance. Ensuring that the Wake-Up Radio uses duty cycling increases the battery life even more.

The result is a high-performance IoT device that last for years rather than months on a single battery.

The impact is clear. IoT devices that will run on IEEE 802.11 (Wi-Fi®) connections need IEEE Wake-Up Radio. Device manufacturers need this information now, in order to build this into their IoT devices of tomorrow.

IEEE Technology Report on Wake-Up Radio

To help IoT device manufacturers prepare for IEEE Wake-Up Radio even before the standard is released, IEEE is offering a technology report that outlines the technology, use cases, and more. The report will be released on 2 November, 2017, and is available for pre-sale now. Device manufacturers that begin planning for IEEE Wake-Up Radio now will have a competitive advantage, especially in consumer categories where IEEE 802.11 (Wi-Fi®) connections are ubiquitous. They will be able to make IoT batteries last longer in their devices.

Increasing battery life in IoT devices is essential. When it comes to devices that run on IEEE 802.11 (Wi-Fi®) connections, IEEE Wake-Up Radio is the solution. Pre-order the IEEE Technology Report on Wake-Up Radio now, and prepare your organization for a competitive advantage in the future.

 

References

Tung, L. (2017, Feb 7). IoT Devices Will Outnumber the World’s Population this Year for the First Time. ZDNet.

McCormick, D. (2017, Nov 2). 802.11ba Battery Life Improvement – Preview: IEEE Technology Report on Wake-Up Radio. IEEE Xplore.

 

 

Continue Reading 0

Low-Power, Low-Latency IoT Devices Will Transform the Logistics Industry

Low-power, low-latency logistics industry

We often hear about the Internet of Things (IoT) in consumer devices, but the IoT is transforming industry as well. From smart warehouses to smart agriculture to retail to environment, there seem to be as many use cases as their are devices and sensors. And all of these devices need power as they collect and share data. To conserve power and efficiency with the wide breadth and sheer magnitude of the IoT, it will be crucial to utilize low-power, low-latency IoT devices. This is especially true for businesses in supply chain management, as these devices will particularly transform the logistics industry.

Delivery and fulfillment companies generally use third-party logistics (3PL) in their operations, which involves a business transporting products and resources through outsourced services. According to Meola (2016), the IoT will impact the following aspects of this process:

  • Asset Tracking in Supply Chain Management: Whereas freight and shipping companies have previously tracked and managed inventory using barcode scanners, IoT solutions (such as RFID tags) are beginning to offer more valuable data and make these scanners obsolete.
  • Inventory and Warehouse Management: In addition to RFID tags, logistics companies are using more internet-connected and satellite trackers to track specific items as they travel to their destination. Bluetooth tags and beacons allow tracking in smaller areas; retailers tend to use them for monitoring customer traffic and customizing marketing messages.
  • Fleet Management: IoT solutions using GPS and other tracking technologies provide real-time data on where vehicles are located and how they are operating. These solutions carry the potential to impact physical asset movement and delivery, consumer transportation, and field-service vehicles.

Combining the capability of IoT devices with low-power, low-latency attributes means longer-lasting devices as well as more reliable and more efficient analytics. More efficient analytics means more powerful customer support services and greater revenue. Wake-Up Radio from IEEE 802.11ba standards task group provides a low-power, low-latency solution that may be critical to IoT devices and sensors developed for the logistics industry.

You can read more about Wake-Up Radio and how to utilize this technology with IoT devices your organization develops in the IEEE Technology Report on Wake-Up Radio: An Application, Market, and Technology Impact Analysis of Low-Power/Low-Latency 802.11 Wireless LAN Interfaces, coming soon!

References:

Meola, A. (2016, Dec. 21). How IoT logistics will revolutionize supply chain management. Business Insider.

Continue Reading 0